ცოდნა სინათლეა - Knowledge is light - Знание свет -
აღმოჩენის ისტორია
ბერილიუმი აღმოაჩინა ფრანგმა ფიზიკოსმა ლუი ნიკოლა ვოკლენმა 1798 წელს. ბერილიუმის შენაერთების შემადგენლობისა და მისი მინერალების კვლევაში დიდი წვლილი მიუძღვის რუს ქიმიკოს ივანე ავდეევსაც. სწორედ მან დაამტკიცა, რომ ბერილიუმის ოქსიდი შემადგენლობა არის BeO, და არა Be2O3, როგორც ადრე ითვლებოდა.
სახელწოდების წარმომავლობა
[რედაქტირება | წყაროს რედაქტირება]ბერილიუმის დასახელება მოდის მინერალ ბერილიდან (ძვ. ბერძნ. βήρυλλος beryllos) (ბერილიუმის ან ალუმინის სილიკატი, Be3Al2Si6O18), რომელიც თავის მხრივ სამხრეთ ინდოეთში, მადრასთან ახლოს მდებარე ქალაქ ბელურს (ინგლ. Belur, კანად. ಬೇಲೂರು) უკავშირდება; ძველი დროიდან ინდოეთში ცნობილი იყო ზურმუხტის (ბერილის ნაირსახეობის) საბადოები. იმის გამო რომ ბერილის ნაერთების ხსნარებს წყალთან მოტკბო გემო ჰქონდა ელემენტს თავიდან უწოდეს «გლუცინიუმი» (ძვ. ბერძნ. γλυκύς glykys — ტკბილი).
ბერილიუმი ბუნებაში
ბერილიუმის იზოტოპი 8Be ბუნებაში არ არსებობს, თავისი არამდგრადობის გამო, მისი ნახევრადდაშლის პერიოდია 10−18 с. სტაბილურია 9Be. 9Be-ს გარდა ბუნებაში გვხვდება რადიოაქტიური შემდეგი იზოტოპები: 7Be და 10Be.
დედამიწის ქერქში ბერილიუმის შემცველობაა მიახლოებით 3,8 გ/ტ, ის მატულობს ულტრაფუძიდან (0,2 გ/ტ) მჟავე (5 გ/ტ) და ტუტე (70 გ/ტ) ქანებამდე. მაგმატიკურ ქანებში ბერილიუმის ძირითადი მასა დაკავშირებულია პლაგიოკლაზებით, სადაც ბერილიუმს ცვლის სილიციუმი. ყველაზე დიდი კონცენტრაციით ხასიათდება მისი მუქი ფერის მინერალები (ათეულ, იშვიათად ასობით გ/ტ). თუკი ბერილიუმი ტუტე ქანებში თითქმის იბნევა, მჟავე ქანების ფორმირებისას კი ის შეიძლება გროვდებოდეს პოსტმაგმატიკურ პროდუქტებში — პეგმატიტებში და პნევმატოლიტო-ჰიდროთერმულ სხეულებში. მჟავე პეგმატიტებში ბერილიუმის საკმაო რაოდენობის დაგროვება დაკავშირებულია ალბიტიზაციის და მუსკოვიტიზაციის პროცესთან. პეგმატიტებში ბერილიუმი წარმოქმნის თავის მინერალებს, მაგრამ მისი ნაწილი (მიახლ. 10 %) იზომორფულ ფორმაშია ქანწარმომქმნელ და მეორად მინერალებში (მიკროკლინი, ალბიტი, კვარცი და ა.შ.). ტუტე პეგმატიტებში ბერილიუმი იმყოფება ცოტა რაოდენობით იშვიათი მინერალების შემადგენლობაში: ევდიდიმიტი, ჩქალოვიტი, ანალციმი და ლეიკოფანი, სადაც შედის ანიონურ ჯგუფში. პოსტმაგმატიკური ხსნარებს გამოაქვთ ბერილიუმი მაგმიდან, ფტორშემცველი ემანაციის სახით და კომპლექსურ ნაერთებში ვოლფრამთან, კალასთან, მოლიბდენთან, ლითიუმთან ასოციაციაში.
ბერილიუმის შემცველობა ზღვის წყალში ძალიან მცირეა — 6×10−7 მგ/ლ.
ცნობილია თვითონ ბერილიუმის 30-მდე მინერალი, მათგან მხოლოდ 6 ითვლება შედარებით უფრო გავრცელებულად: ბერილი, ქრიზობერილი, ბერტრანდიტი, ფენაკიტი, ჰელვინი, დანალიტი. სამრეწველო მნიშვნელობა აქვს ძირითადად ბერილს.
ბერილიუმის (ბერილის) ნაირსახეობები ითვლებიან ძვირფას ქვებად: აკვამარინი — ცისფერი, მომწვანო-ცისფერი, მოცისფრო-მწვანე; ზურმუხტი — მუქი-მწვანე, ნათელი-მწვანე; ჰელიოდორი — ყვითელი; არსებობს ბერილიუმის (ბერილის) სხვა ნაირსახეობები, რომლებიც ფერებით განსხვავდებიან (მუქი-ლურჯი, ვარდისფერი, წითელი, ღია-ცისფერი, უფერული და სხვა). ბერილს ფერს აძლევს სხვა და სხვა ელემენტების მინარევები.
საბადოების ადგილი
ბერილიუმის საბადოები მდებარეობს ბრაზილიის, არგენტინის, აფრიკის, ინდოეთის, ბურიატიის, ციმბირის ტერიტორიებზე
იზოტოპები
სტანდარტული ატომური მასა
ცეზიუმის სტანდარტულ ატომურ მასად მიღებულია — 9.0122, რომელიც როგორც წესი იანგარიშება ბუნებაში არსებულ ყველა სტაბილურ იზოტოპტთა საშუალო შეწონილი მასით, მათი დედამიწის ქერქსა და ატმოსფეროში გავრცელების პროპორციულად. ბუნებაში არსებობს ცეზიუმის მხოლოდ ერთი სტაბილური იზოტოპი (9Be), რომლის ატომური მასაც შეადგენს 9.012182.
ფიზიკური თვისებები
ქიმიური თვისებები
ლითონური ბერილიუმი ოთახის ტემპერატურაზე შედარებით ნაკლებად შედის რეაქციაში. კომპაქტურად ის არ რეაგირებს წყალთან და მის ორთქლთან და არ იჟანგება ჰაერით 600 °С ტემპერატურამდე. ბერილიუმის ფხვნილი ცეცხლის მოკიდებისას იწვის ნათელი ალით, ამ დროს წარმოიქმნება ოქსიდი და ნიტრიდი. ბერილიუმთან ჰალოგენები რეაგირებენ 600 °С-ზე უფრო მაღალ ტემპერატ. ამიაკი ურთიერთქმედებს 1200 °С-ზე მეტ ტემპერატურაზე ნიტრიდების წარმოქმნით Be3N2, ხოლო ნახშირბადი იძლევა კარბიდს Ве2С 1700 °С-ზე. წყალბადთან ბერილიუმი არ რეაგირებს.
ბერილიუმი ადვილად იხსნება მჟავეების (გოგირდმჟავა, მარილმჟავა, აზოტმჟავა) წყლის ხსნარებში. ბერილიუმი ტუტის ხსნარებთან რეაქციაში შედის წყალბადის გამოყოფით და ჰიდროქსობერილატების წარმოქმნით:
Be + 2NaOH(р) + 2H2O = Na2[Be(OH)4] + H2
თუ კი ტუტესთან რეაქცია წარიმართება 400—500 °С-ზე მაშინ წარმოიქმნება დიოქსიბერილატები:
Be + 2NaOH(ж) = Na2BeO2 + H2
მიღება
მარტივი ნივთიერების სახით ბერილიუმი მიიღეს XIX ს. - კალიუმის ზემოქმედებით ბერილიუმის ქლორიდზე:
ახლა კი ბერილიუმს იღებენ, ბერილიუმის ფტორიდისა და მაგნიუმის ჟანგვა-აღდგენის რეაქციით:
,
ან ბერილიუმის ქლორიდისა და ნატრიუმის ელექტროლიზით. ბერილიუმის პირველად მარილებს გამოყოფენ ბერილიუმ შემცველი მადნების გადამუშავებით.
გამოყენება
შენადნობთა ლეგირირება
ბერილიუმი ძირითადად გამოიყენება შენადნობთა მალეგირირებელი დანამატი. ბერილიუმის დაბატება იწვევს შენადნობების სიმაგრისა და სიმტკიცის მატებას, მისგან დამზადებული დეტალების ზედაპირის კოროზიისადმი მდგრადობას. ტექნიკაში ფართოდ გამოიყენება ბერილიუმიანი BeB (ზამბარიანი კონტაქტები) ტიპის ბრინჯაო. ფოლადში 0,5 % ბერილიუმის დამატება იძლევა საშუალებას მისგან ზამბარები დამზადეს.
რენტგენოტექნიკა
ბერილიუმი სუსტად შთანთქავს რენტგენულ გამოსხივებას, ამიტომაც მისგან ამზადებენ რენტგენული მილაკების ფანჯრებს (საიდანაც გამოსხივება გარეთ გამოდის).
ბირთვული ენერგეტიკა
ატომურ რეაქტორებში ბერილიუმისაგან ამზადებენ ნეიტრონების რეფლექტორებს (ამსხლეტი), მას გამოიყენებენ როგორც ნეიტრინების შემნელებელს. ზოგ α-რადიოაქტიურ ნუკლეიდებთან ნარევში ბერილიუმი გამოიყენება ნეიტრონის წყაროს ამპულებში, რადგან ბერილიუმ-9-ს ბირთვებისა და α-ნაწილაკების ურთიერთქმედებით წარმოიქმნება ნეიტრონები: 9Ве + α → n + 12C.
ბერილიუმის ოქსიდი ყველაზე მეტი თბოგამტარია სხვა ოქსიდებს შორის ასევე ის ლითონურ ბერილიუმთან ერთად გამოიყენება ატომურ ტექნიკაში, როგორც უფრო ეფექტიანი ნეიტრონების შემანელებელი და რეფლექტორი, ვიდრე სუფთა ბერილიუმი, ამასთან ერთად ბერილიუმის ოქსიდი ურანის ოქსიდთან ერთად გამოიყენება, როგორც ეფექტიანი ბირთვული საწვავი. ბერილიუმის ფტორიდი ლითიუმის ფტორიდთან ერთად შენადნობში გამოიყენება, როგორც თბომატარებელი და ურანის, პლუტონიუმის, თორიუმის მარილების გამხსნელი მაღალტემპერატურულ თხევადმარილური ატომურ რეაქტორებში. ბერილიუმის ფტორიდი გამოიყენება ატომურ ტექნიკაში მინის ხარშვისას, რომელიც გამოიყენება ნეიტრონის მცირე ნაკადების დასარგულირებლად. რომლის ყველაზე ტექნოლოგიური და ხარისხობრივი შემადგენლობა შემდეგია - (BeF2−60 %,PuF4−4 %,AlF3−10 %, MgF2−10 %, CaF2−16 %). ეს შემადგენლობა თვალნათლივ გვიჩვენებს პლუტონიუმის ნაერთის გამოყენების მაგალითს, როგორც კონსტრუქციული მასალა (ნაწილობრივ).
ლაზერული მასალები
ლაზერულ ტექნიკაში გამოყენებას ჰპოვებს ბერილიუმის ალუმინატი, მყარსხეულიანი გამომსხივებლების დასამზადებლად (ღეროები, ფირფიტები).
აეროკოსმოსური ტექნიკა
აეროკოსმოსურ ტექნიკის მუხრუჭების, თბოეკრანების და დამიზნების სისტემების წარმოებაში ბერილიუმთან პრაქტიკულად ვერც ერთი კონსტრუქციული მასალა ვერ კონკურირებს. კონსტრუქციული მასალები, სადაც გამოყენებულია ბერილიუმი, ამასთანავე ხასიათდებიან სიმსუბუქით, სიმტკიცით, და მაღალ ტემპერატურებისადმი მდგრადობით. რომელიც ალუმინზე 1,5-ჯერ უფრო მსუბუქია, ასეთი შენადნობები ასევე უფრო მტკიცეა, ვიდრე ბევრი სპეციალური ფოლადი. აწყობილია ბერილიდების წარმოება, რომელიც გამოიყენება როგორც კონსტრუქციული მასალა რაკეტებისა და თვითმფრინავების ძრავებისა და გარე საფარის დამზადებაში.
სარაკეტო საწვავი
დამჟანგავი | კუთრი წევა(Р1,წმ) | წვის ტემპერატურა °С | საწვავის სიმკცრივე გ/სმ³ | სიჩქარის მონამატი, ΔVიდ,25, მ/წმ | საწვავის წონითი შემცვ. % |
---|---|---|---|---|---|
ფთორი | 323,3 წმ | 4328 °C | 1,547 | 5014 მ/წმ | 13 % |
ტეტრაფტორჰიდრაზინი | 310,8 წმ | 4234 °C | 1,19 | 4204 მ/წმ | 11 % |
ClF3 | 277,4 წმ | 4075 °C | 1,85 | 4696 მ/წმ | 13 % |
ClF5 | 289,6 წმ | 4176 °C | 1,762 | 4791 მ/წმ | 13 % |
პერქლორილფტორიდი | 242,6 წმ | 3593 °C | 1,709 | 3953 მ/წმ | 13 % |
ფთორის ჟანგი (ფთორის ოქსიდი) | 308,6 წმ | 4177 °C | 1,561 | 4986 მ/წმ | 13 % |
ჟანგბადი | 235,4 წმ | 3637 °C | 1,21 | 3213 მ/წმ | 15 % |
წყალბადის ზეჟანგი | 276,8 წმ | 3472 °C | 1,503 | 4231 მ/წმ | 18 % |
აზოტმჟავა | 256 წმ | 2728 °C | 1,574 | 4005 მ/წმ | 24 % |
ღირს აღინიშნოს ლითონური ბერილიუმის მაღალი ღირებულება და მაღალი ტოქსიკურობა, ამასთან დაკავშირებით დიდი ძალისხმევაა მიმართული რათა გამოვლენილ იქნას ბერილიუმშემცველი საწვავები, რომლებსაც ნაკლები საერთო ტოქსიკურობა და ღირებულება ექნება. ერთ-ერთი ასეთი ნაერთი არის ბერილიუმის ჰიდრიდი.
დამჟანგავი | კუთრი წევა (Р1,წმ) | წვის ტემპერატურა °С | საწვავის სიმკვრივე გ/სმ³ | სიჩქარის მონამატი, ΔVიდ,25, მ/წმ | საწვავის წონითი შემცვ. % |
---|---|---|---|---|---|
ფთორი | 354,9 წმ | 4244 °C | 1,298 | 5029 მ/წმ | 13 % |
ტეტრაფტორჰიდრაზინი | 335,6 წმ | 4133 °C | 1,065 | 4270 მ/წმ | 10 % |
ClF3 | 298,8 წმ | 3885 °C | 1,573 | 4674 მ/წმ | 10 % |
ClF5 | 314,5 წმ | 3979 °C | 1,481 | 4773 მ/წმ | 11,25 % |
პერქლორილფთორიდი | 309,5 წმ | 2932 °C | 1,114 | 4037 მ/წმ | 34 % |
ფთორის ჟანგი (ფთორის ოქსიდი) | 342,9 წმ | 3027 °C | 1,054 | 4338 მ/წმ | 35 % |
ჟანგბადი | 331,4 წმ | 3079 °C | 0,867 | 3744 მ/წმ | 45 % |
წყალბადის ზეჟანგი | 353,1 წმ | 2932 °C | 0,98 | 4285 მ/წმ | 41 % |
N2O4 | 316,1 წმ | 2558 °C | 0,93 | 3721 მ/წმ | 48 % |
აზოტმჟავა | 322,1 წმ | 3085 °C | 1,047 | 4060 მ/წმ | 35 % |
ცეცხლგამძლე მასალები
ბერილიუმის ოქსიდი გამოიყენება სპეციალურ შემთხვევისას, როგორც ძალიან მნიშვნელოვანი ცეცხლგამძლე მასალა. ის ითვლება როგორც ყველაზე კარგი ცეცხლგამძლე მასალა და ამასთან ის არის ყველაზე კარგი თბოგამტარი ცეცხლგამძლე მასალა.
ბიოლოგიური როლი და ფიზიოლოგიური მოქმედება
ცოცხალ არსებებში ბერილიუმი არ ატარებს და არ წარმოადგენს რაღაც მნიშვნელოვან ბიოლოგიურ ფუნქციას. მაგრამ ბერილიუმს ძალუძს ზოგ ფერმენტებში მაგნიუმის ჩანაცვლება, რაც იწვევს მუშაობის დარღვევას. ზრდასრული ადამიანის ორგანიზმში (ტანის წონა 60 კგ) ბერილიუმის შემცველობაა 0,031 მგ, ყოველდღიურად მიიღებს საკვებთან ერთად — მიახლოებით 0,01 მგ.
ბერილიუმი — საწამლავია: ბერილიუმის აქროლადი (და ხსნადი) ნართები, მათ შორის მტვერი, რომელიც შეიცავს ბერილიუმის ნაერთებს, მაღალტოქსიკურია. ჰაერისათვის ბერილიუმი შეადგენს 0,001 მგ/მ³. ბერილიუმს ახასიათებს ნათლად გამოხატული ალერგიული და კანცეროგენული მოქმედება. ბერილიუმშემცველი ჰაერის შესუნთქვა იწვევს სასუნთქი გზების მძიმე დაავადებას — ბერილიოზს.
იხ.ვიდეო - Beryllium - A LIGHT Metal that REFLECTS NEUTRONS!