вторник, 25 января 2022 г.

ტოპოლოგია

ცოდნა სინათლეა - Knowledge is light - Знание свет -                                                 მათემატიკის დარგი

                            ტოპოლოგია

მობიუსის ლენტი, ერთმხრიანი ზედაპირი. მსგავსი ფიგურები ხშირად გვხდება ტოპოლლოგიაში
(ბერძნ. topos – ადგილი, logos – სწავლა) — მათემატიკის დარგი, რომლის შესწავლის ობიექტებია ტოპოლოგიური სივრცეებიუწყვეტი ასახვები, და დაკავშირებული მათემატიკური ცნებები. მისი მეშვეობით ხდება მათემატიკაში ისეთი ფუნდამენტური ცნებების ფორმალიზება, როგორიცაა ბმულობაკრებადობაუწყვეტობა და ა.შ. მე-20 საუკუნის დასაწყისში დარგის დაარსებისას, მას geometria situs (ლათ. „ადგილის გეომეტრია“) და analysis situs (ლათ. „ადგილის ანალიზი“) უწოდებდნენ. 1925-75 წლებში მატემატიკის განვითარების ყველაზე მნიშვნელოვანი სფერო იყო.

ტოპოლოგიის ერთ-ერთი თეორემა პოპულარულ ენაზე შემდეგნაირად შეიძლება ჩამოყალიბდეს: „შეუძლებელია თმით დაფარული ბურთის მთლიანად გლუვად დავარცხნა“. ეს ინტუიციურად გასაგები ფაქტია. ფორმალურად კი იგივე თეორემა შემდეგში მდგომარეობს: „სფეროზე არ არსებობს არაქრობადი უწყვეტი მხები ვექტორი“, და მისი დამტკიცება არატრივიალურია. ეს თეორემა სამართლიანია არა მარტო სფეროსათვის არამედ ყველა შეკრული ზედაპირისთვის ნახვრეტების გარეშე (გარკვეული პირობების დაკმაყოფილების შემთხვევაში) და უკავშირდება „გეომეტრიული ფიგურების“ გარკვეულ ზოგად თვისებებს. ამ თვისებების გამოკვლევა ტოპოლოგიის საკითხია.

ხშირად ტოპოლოგიას აღწერენ როგორც გეომეტრიის ნაწილს, გეომეტრიული ობიექტების უზოგადესი თვისებების შესახებ, თვისებების რომლებიც უცვლელი რჩება უწყვეტი დეფორმაციების დროს (შეკუმშვა, გაწელვა, მოღუნვა; იხ. ნახატი ქვემოთ). გეომეტრიული ფიგურები, რომლებიც ერთიმეორისგან ამგვარი უწყვეტი დეფორმაციების საშუალებით მიიღება, ტოპოლოგიის თვალსაზრისით არ განსხვავდება (ჰომეომორფიზმი).

Homeo tasse.png
ფინჯანი, გირი და ბლითი „ტოპოლოგიურად“ ერთი და იგივე გეომეტრიული ფიგურებია

ალგებრული ტოპოლოგიის ზოგადი მეთოდია სხვადასხვა „გეომეტრიული“ ობიექტებისთვის უფრო გამოთვლადი „ალგებრული“ (დისკრეტული) ინვარიანტების შეთანადება. ამბობენ რომ ალგებრული ტოპოლოგია სწავლობს გეომეტრიას, ალგებრის გამოყენებით. (ტოპოლოგიის სხვადასხვა დარგების შესახებ იხილეთ ქვემოთ).

ტოპოლოგიამ უმთავრესი გავლენა მოახდინა მათემატიკის ისეთ დარგებზე როგორიცაა: ალგებრული გეომეტრიადიფერენციალური გეომეტრიადინამიკური სისტემებიდიფერენციალური განტოლებები და სხვ.

                                                                  

ჰოლიჰერდრა (კუბო-ჰემიოლტაჰედრონი)

ტოპოლოგია მოიცავს ერთმანეთისგან საკმაოდ დაშორებულ რამდენიმე ქვედარგს.

  • სიმრავლური ტოპოლოგია ანუ ზოგადი ტოპოლოგია იკვლევს ზოგად ტოპოლოგიურ სივრცეებს. მისი პირველი თეორემები შეეხება ტოპოლოგიური სივრცეების ფუნდამენტურ თვისებებს (იხ. ქვემოთ), რომლებიც მნიშვნელოვანია მათემატიკის სხვა ნაწილებში. სიმრავლური ტოპოლოგია თანამედროვე მათემატიკური ანალიზის სტანდარტული საფუძველია.

ტოპოლოგიის სხვა მიმართულებებია, მაგალითად, კვანძების თეორია, (კო)ბორდიზმების თეორია, ტოპოლოგიური K-თეორია და სხვ.

იხ. ვიდეო პროფესორი ივანე წერეთელი - ლექციის თემა "ტოპოლოგია" - 

ვიდეო ლექციაში საუბარია თანამედროვე მათემატიკის ერთ-ერთ უმნიშვნელოვანეს დარგზე - ტოპოლოგიაზე. კერძოდ,  გადმოცემულია მოკლე პრეისტორია და ის ძირითადი იდეები, რომლებზე დაყრდნობითაც ტოპოლოგია ჩამოყალიბდა.
  • ტიცეს გაფართოების თეორემა: ნორმალური სივრცის ნებისმიერ ჩაკეტილ ქვესიმრავლეზე განმარტებული ნამდვილი უწყვეტი ფუნქცია შეიძლება გავრცელდეს მთელ სივრცეზე.
  • ბერის კატეგორიის თეორემა: თუ X სრული მეტრიკული სივრცეა ან ლოკალურად კომპაქტური ჰაუსდორფის სივრცე, მაშინ მისი არსადმკვრივი ქვესიმრავლეების ნებისმიერი თვლადი გაერთიანების ბირთვი ცარიელია.

უფრო ზოგადი თეორიები

შედეგების ანალიზს და შემდგომ მათემატიკურ აბსტრაგირებას მივყავართ უფრო ზოგადი სტრუქტურების კვლევისკენ. უწერტილო ტოპოლოგია სწავლობს ტოპოლოგიურ სივრცეებთან დაკავშირებულ თვისებებს კიდევ უფრო ზოგად სიტუაციებში. თავდაპირველად ტოპოლოგიაში გაჩენილმა იდეებმა აგრეთვე განვითარება ჰპოვა კატეგორიათა თეორიის სხვადასხვა კონტექსტში.



Комментариев нет:

მუსიკალური პაუზა

ცოდნა სინათლეა - Knowledge is light - Знание свет -                         მუსიკალური პაუზა  ჩვენ ვიკლევთ სამყაროს აგებულებას ოღონდ ჩვენი ...