понедельник, 3 июля 2023 г.

საკომუნიკაციო თანამგზავრები

ცოდნა სინათლეა - Knowledge is light - Знание свет -  

          საკომუნიკაციო თანამგზავრები
აშშ-ს სამხედრო საკომუნიკაციო თანამგზავრი MILSTAR
საკომუნიკაციო თანამგზავრი არის ხელოვნური თანამგზავრი, რომელიც გადასცემს და აძლიერებს რადიოტელეკომუნიკაციის სიგნალებს ტრანსპონდერის საშუალებით; ის ქმნის საკომუნიკაციო არხს წყაროს გადამცემსა და მიმღებს შორის დედამიწის სხვადასხვა ადგილას. საკომუნიკაციო თანამგზავრები გამოიყენება ტელევიზიის, ტელეფონის, რადიოს, ინტერნეტისა და სამხედრო აპლიკაციებისთვის. ბევრი საკომუნიკაციო თანამგზავრი გეოსტაციონარული ორბიტაზე იმყოფება ეკვატორიდან 22,300 მილის (35,900 კმ) სიმაღლეზე, ასე რომ, თანამგზავრი სტაციონარული ჩანს ცის იმავე წერტილში; ამიტომ სახმელეთო სადგურების სატელიტური თეფშების ანტენები შეიძლება მუდმივად იყოს მიმართული იმ ადგილზე და არ არის საჭირო გადაადგილება სატელიტის თვალყურის დევნებისთვის. სხვები ქმნიან თანავარსკვლავედებს დედამიწის დაბალ ორბიტაზე, სადაც ანტენები ადგილზე უნდა აკონტროლონ თანამგზავრების პოზიცია და ხშირად გადაერთონ თანამგზავრებს შორის.

მაღალი სიხშირის რადიოტალღები, რომლებიც გამოიყენება სატელეკომუნიკაციო კავშირებისთვის, გადაადგილდებიან მხედველობის ხაზით და, შესაბამისად, დაბრკოლდებიან დედამიწის მრუდით. საკომუნიკაციო თანამგზავრების დანიშნულებაა სიგნალის გადაცემა დედამიწის მრუდის გარშემო, რაც საშუალებას აძლევს კომუნიკაციას ფართოდ განცალკევებულ გეოგრაფიულ წერტილებს შორის. საკომუნიკაციო თანამგზავრები იყენებენ რადიო და მიკროტალღური სიხშირეების ფართო სპექტრს. სიგნალის ჩარევის თავიდან აცილების მიზნით, საერთაშორისო ორგანიზაციებს აქვთ რეგულაციები, რომელთა სიხშირის დიაპაზონი ან "ზოლები" გარკვეულ ორგანიზაციებს აქვთ უფლება გამოიყენონ. ზოლების ეს განაწილება ამცირებს სიგნალის ჩარევის რისკს.
იხ. ვიდეო - Как собирают и запускают в космос спутники связи


ისტორია
წარმოშობა
1945 წლის ოქტომბერში არტურ კლარკმა გამოაქვეყნა სტატია სახელწოდებით "Extraterrestrial Relays" ბრიტანულ ჟურნალში Wireless World. სტატიაში აღწერილი იყო ხელოვნური თანამგზავრების განლაგების საფუძვლები გეოსტაციონალურ ორბიტებში რადიოსიგნალების გადასაცემად. ამის გამო, არტურ კლარკს ხშირად ციტირებენ, როგორც საკომუნიკაციო თანამგზავრის კონცეფციის გამომგონებელს და ტერმინი „კლარკის ქამარი“ გამოიყენება ორბიტის აღწერად.
დედამიწის პირველი ხელოვნური თანამგზავრი იყო Sputnik 1, რომელიც ორბიტაზე გაუშვა საბჭოთა კავშირმა 1957 წლის 4 ოქტომბერს. ის შეიმუშავეს მიხაილ ტიხონრაოვმა და სერგეი კოროლევმა კონსტანტინე ციოლკოვსკის ნამუშევრებზე დაყრდნობით.[6] Sputnik 1 აღჭურვილი იყო ბორტ რადიო გადამცემით, რომელიც მუშაობდა ორ სიხშირეზე 20.005 და 40.002 MHz, ანუ 7 და 15 მეტრი ტალღის სიგრძეზე. თანამგზავრი არ იყო მოთავსებული ორბიტაზე დედამიწის ერთი წერტილიდან მეორეზე მონაცემების გასაგზავნად; რადიო გადამცემი გამიზნული იყო რადიოტალღების განაწილების თვისებების შესასწავლად იონოსფეროში. Sputnik 1-ის გაშვება იყო მთავარი ნაბიჯი კოსმოსისა და რაკეტების განვითარების საქმეში და აღნიშნავს კოსმოსური ეპოქის დასაწყისს.

ადრეული აქტიური და პასიური სატელიტური ექსპერიმენტები
არსებობს საკომუნიკაციო თანამგზავრების ორი ძირითადი კლასი, პასიური და აქტიური. პასიური თანამგზავრები მხოლოდ ასახავს სიგნალს, რომელიც მოდის წყაროდან, მიმღების მიმართულებით. პასიური თანამგზავრების შემთხვევაში, ასახული სიგნალი არ ძლიერდება თანამგზავრზე და გადაცემული ენერგიის მხოლოდ ძალიან მცირე რაოდენობა აღწევს რეალურად მიმღებამდე. ვინაიდან თანამგზავრი დედამიწაზე შორს არის, რადიოსიგნალი სუსტდება თავისუფალი სივრცის ბილიკის დაკარგვის გამო, ამიტომ დედამიწაზე მიღებული სიგნალი ძალიან, ძალიან სუსტია. მეორეს მხრივ, აქტიური თანამგზავრები აძლიერებენ მიღებულ სიგნალს, სანამ ხელახლა გადასცემენ მიმღებს მიწაზე.პასიური თანამგზავრები იყო პირველი საკომუნიკაციო თანამგზავრები, მაგრამ ახლა ნაკლებად გამოიყენება.

მუშაობა, რომელიც დაიწყო ელექტრული დაზვერვის შეგროვების სფეროში შეერთებული შტატების საზღვაო კვლევითი ლაბორატორიაში 1951 წელს, განაპირობა პროექტს სახელწოდებით Communication Moon Relay. სამხედრო დამგეგმავები დიდი ხანია ავლენდნენ მნიშვნელოვან ინტერესს უსაფრთხო და საიმედო საკომუნიკაციო ხაზების მიმართ, როგორც ტაქტიკური აუცილებლობა, და ამ პროექტის საბოლოო მიზანი იყო კაცობრიობის ისტორიაში ყველაზე გრძელი საკომუნიკაციო წრედის შექმნა, მთვარე, დედამიწის ბუნებრივი თანამგზავრი, რომელიც მოქმედებს როგორც პასიური რელე. . 1956 წლის 23 იანვარს ვაშინგტონსა და ჰავაის შორის პირველი ტრანსოკეანური კომუნიკაციის მიღწევის შემდეგ, ეს სისტემა საჯაროდ გაიხსნა და ოფიციალურ წარმოებაში შევიდა 1960 წლის იანვარში.
                                                                  
The Atlas-B with SCORE on the launch pad; the rocket (without booster engines) constituted the satellite.
პირველი სატელიტი, რომელიც შექმნილი იყო კომუნიკაციების აქტიურად გადასაცემად, იყო Project SCORE, რომელსაც ხელმძღვანელობდა Advanced Research Projects Agency (ARPA) და გაუშვა 1958 წლის 18 დეკემბერს, რომელიც იყენებდა მაგნიტოფონს შენახული ხმოვანი შეტყობინების გადასატანად, ასევე მისაღებად, შესანახად, და ხელახლა გადასცეს შეტყობინებები. იგი გამოიყენებოდა აშშ-ს პრეზიდენტის დუაიტ ეიზენჰაუერის საშობაო მილოცვის გასაგზავნად. სატელიტმა ასევე შეასრულა რამდენიმე გადაცემა რეალურ დროში მანამ, სანამ 1958 წლის 30 დეკემბერს არადამუხტავი ბატარეები ჩაიშალა რვა საათის რეალური მუშაობის შემდეგ.

SCORE-ის პირდაპირი მემკვიდრე იყო ARPA-ს ხელმძღვანელობით სხვა პროექტი სახელწოდებით Courier. Courier 1B ამოქმედდა 1960 წლის 4 ოქტომბერს, რათა გამოეკვლია შესაძლებელი იყო თუ არა გლობალური სამხედრო საკომუნიკაციო ქსელის შექმნა "დაგვიანებული განმეორებითი" თანამგზავრების გამოყენებით, რომლებიც იღებენ და ინახავენ ინფორმაციას, სანამ არ მიიღებენ ბრძანებას მათი ხელახალი გადაცემა. 17 დღის შემდეგ, ბრძანების სისტემის გაუმართაობამ დაასრულა კომუნიკაცია თანამგზავრიდან.

NASA-ს სატელიტური აპლიკაციების პროგრამამ გაუშვა პირველი ხელოვნური თანამგზავრი, რომელიც გამოიყენებოდა პასიური სარელეო კომუნიკაციებისთვის Echo 1-ში 1960 წლის 12 აგვისტოს. Echo 1 იყო ალუმინირებული ბუშტის თანამგზავრი, რომელიც მოქმედებს როგორც მიკროტალღური სიგნალების პასიური რეფლექტორი. საკომუნიკაციო სიგნალები თანამგზავრიდან დედამიწის ერთი წერტილიდან მეორეზე გადახტა. ეს ექსპერიმენტი ცდილობდა დაედგინა სატელეფონო, რადიო და სატელევიზიო სიგნალების მსოფლიო მაუწყებლობის მიზანშეწონილობა.

მეტი პირველი და შემდგომი ექსპერიმენტები
Telstar იყო პირველი აქტიური, პირდაპირი სარელეო საკომუნიკაციო კომერციული თანამგზავრი და აღნიშნა სატელევიზიო სიგნალების პირველი ტრანსატლანტიკური გადაცემა. ეკუთვნის AT&T-ს, როგორც მრავალეროვნული შეთანხმების ნაწილი AT&T-ს, Bell Telephone Laboratories-ს, NASA-ს, ბრიტანეთის გენერალურ ფოსტასა და საფრანგეთის ეროვნულ PTT-ს (ფოსტა) შორის თანამგზავრული კომუნიკაციების განვითარების მიზნით, იგი NASA-მ 10-ს კანავერალის კონცხიდან გაუშვა. 1962 წლის ივლისი, პირველი კერძო დაფინანსებული კოსმოსური გაშვება.

კიდევ ერთი პასიური სარელეო ექსპერიმენტი, რომელიც ძირითადად განკუთვნილი იყო სამხედრო საკომუნიკაციო მიზნებისთვის, იყო პროექტი ვესტ ფორდი, რომელსაც ხელმძღვანელობდა მასაჩუსეტსის ტექნოლოგიური ინსტიტუტის ლინკოლნის ლაბორატორია. 1961 წელს თავდაპირველი მარცხის შემდეგ, 1963 წლის 9 მაისს გაშვებამ დაარბია 350 მილიონი სპილენძის ნემსის დიპოლები პასიური ამრეკლავი სარტყლის შესაქმნელად. მიუხედავად იმისა, რომ დიპოლების მხოლოდ ნახევარი იყო სათანადოდ ერთმანეთისგან განცალკევებული,  პროექტმა შეძლო წარმატებით ექსპერიმენტები და კომუნიკაცია SHF X დიაპაზონის სპექტრის სიხშირეების გამოყენებით.

გეოსტაციონარული თანამგზავრების უშუალო წინამორბედი იყო Hughes Aircraft Company-ის Syncom 2, გაშვებული 1963 წლის 26 ივლისს. Syncom 2 იყო პირველი საკომუნიკაციო თანამგზავრი გეოსინქრონულ ორბიტაზე. ის დედამიწის გარშემო ტრიალებდა დღეში ერთხელ მუდმივი სიჩქარით, მაგრამ იმის გამო, რომ მას ჯერ კიდევ ჰქონდა ჩრდილოეთ-სამხრეთის მოძრაობა, საჭირო იყო სპეციალური აღჭურვილობა მის დასაკვირვებლად.მისი მემკვიდრე, Syncom 3, გაშვებული 1964 წლის 19 ივლისს, იყო პირველი გეოსტაციონარული საკომუნიკაციო თანამგზავრი. სინკომ 3-მა მიიღო გეოსინქრონული ორბიტა, ჩრდილოეთ-სამხრეთის მოძრაობის გარეშე, რაც მას მიწიდან ასახავდა, როგორც ცაში სტაციონარული ობიექტი.

Project West Ford-ის პასიური ექსპერიმენტების პირდაპირი გაფართოება იყო Lincoln Experimental Satellite პროგრამა, რომელიც ასევე ჩაატარა ლინკოლნის ლაბორატორიამ შეერთებული შტატების თავდაცვის დეპარტამენტის სახელით. LES-1 აქტიური საკომუნიკაციო თანამგზავრი გაუშვა 1965 წლის 11 თებერვალს აქტიური მყარი X ზოლის გრძელვადიანი სამხედრო კომუნიკაციების შესასწავლად. სულ ცხრა თანამგზავრი გაუშვა 1965-1976 წლებში, როგორც ამ სერიის ნაწილი.

საერთაშორისო კომერციული სატელიტური პროექტები
შეერთებულ შტატებში 1962 წელს შეიქმნა კომუნიკაციების სატელიტური კორპორაციის (COMSAT) კერძო კორპორაცია, რომელიც ექვემდებარებოდა აშშ-ს მთავრობის ინსტრუქციას ეროვნული პოლიტიკის საკითხებზე. მომდევნო ორი წლის განმავლობაში საერთაშორისო მოლაპარაკებებმა გამოიწვია Intelsat-ის შეთანხმებები, რამაც თავის მხრივ გამოიწვია Intelsat 1-ის გაშვება, ასევე ცნობილი როგორც Early Bird, 1965 წლის 6 აპრილს, და რომელიც იყო პირველი კომერციული საკომუნიკაციო თანამგზავრი, რომელიც მოთავსდა გეოსინქრონულ ორბიტაზე. . Intelsat-ის შემდგომი გაშვება 1960-იან წლებში უზრუნველყო მრავალდანიშნულების სერვისი და ვიდეო, აუდიო და მონაცემთა სერვისი გემებისთვის ზღვაზე (Intelsat 2 1966-67 წლებში) და სრულად გლობალური ქსელის დასრულება Intelsat 3-ით 1969-70 წლებში. 1980-იანი წლებისთვის, კომერციული თანამგზავრის სიმძლავრის მნიშვნელოვანი გაფართოებით, Intelsat-ი გზაში იყო გამხდარიყო კონკურენტუნარიანი კერძო სატელეკომუნიკაციო ინდუსტრიის ნაწილი და დაიწყო კონკურენციის მიღება შეერთებულ შტატებში, როგორიცაა PanAmSat, რომელიც, ბედის ირონიით, შემდეგ იყიდა. მისი მთავარი მეტოქე 2005 წელს.

როდესაც Intelsat ამოქმედდა, შეერთებული შტატები იყო ერთადერთი გაშვების წყარო საბჭოთა კავშირის გარეთ, რომელიც არ მონაწილეობდა Intelsat-ის შეთანხმებებში. საბჭოთა კავშირმა გაუშვა თავისი პირველი საკომუნიკაციო თანამგზავრი 1965 წლის 23 აპრილს Molniya პროგრამის ფარგლებში. ეს პროგრამა ასევე უნიკალური იყო იმ დროისთვის მისი გამოყენებით, რაც მაშინ ცნობილი გახდა, როგორც Molniya t, რომელიც აღწერს უაღრესად ელიფსურ ორბიტას, ყოველდღიურად ორი მაღალი აპოგეით ჩრდილოეთ ნახევარსფეროზე. ეს ორბიტა უზრუნველყოფს ხანგრძლივ ყოფნის დროს რუსეთის ტერიტორიაზე, ისევე როგორც კანადაში უფრო მაღალ განედებზე, ვიდრე გეოსტაციონარული ორბიტები ეკვატორზე.
Orbit size comparison of GPS, GLONASS, Galileo, BeiDou-2, and Iridium constellations, the International Space Station, the Hubble Space Telescope, and geostationary orbit (and its graveyard orbit), with the Van Allen radiation belts and the Earth to scale.[a]
The Moon's orbit is around 9 times as large as geostationary orbit.[b] (In the SVG file, hover over an orbit or its label to highlight it; click to load its article.)
GPS, GLONASS, Galileo, BeiDou-2 და Iridium თანავარსკვლავედების ორბიტის ზომის შედარება, საერთაშორისო კოსმოსური სადგური, ჰაბლის კოსმოსური ტელესკოპი და გეოსტაციონარული ორბიტა (და მისი სასაფლაოს ორბიტა), ვან ალენის რადიაციული სარტყლებით და დედამიწის მასშტაბით. [ა]
მთვარის ორბიტა დაახლოებით 9-ჯერ დიდია, ვიდრე გეოსტაციონარული ორბიტა.[b] (SVG ფაილში გადაიტანეთ ორბიტაზე ან მის ეტიკეტზე, რათა მონიშნოთ იგი; დააწკაპუნეთ სტატიის ჩასატვირთად.)
საკომუნიკაციო თანამგზავრებს ჩვეულებრივ აქვთ ორბიტის სამი ძირითადი ტიპიდან ერთ-ერთი, ხოლო სხვა ორბიტალური კლასიფიკაციები გამოიყენება ორბიტის დეტალების შემდგომი დასაზუსტებლად. MEO და LEO არის არაგეოსტაციონარული ორბიტა (NGSO).

გეოსტაციონალურ თანამგზავრებს აქვთ გეოსტაციონარული ორბიტა (GEO), რომელიც დედამიწის ზედაპირიდან 22,236 მილის (35,785 კმ) დაშორებულია. ამ ორბიტას აქვს ის განსაკუთრებული მახასიათებელი, რომ ცაში თანამგზავრის აშკარა პოზიცია მიწის დამკვირვებლის მიერ დათვალიერებისას არ იცვლება, თანამგზავრი ცაში თითქოს "დგას". ეს იმიტომ ხდება, რომ თანამგზავრის ორბიტალური პერიოდი იგივეა, რაც დედამიწის ბრუნვის სიჩქარე. ამ ორბიტის უპირატესობა ის არის, რომ სახმელეთო ანტენებს არ სჭირდებათ სატელიტის თვალყურის დევნება ცაზე, ისინი შეიძლება დაფიქსირდეს ცაში იმ ადგილას, სადაც თანამგზავრი გამოჩნდება.
დედამიწის საშუალო ორბიტის (MEO) თანამგზავრები უფრო ახლოს არიან დედამიწასთან. ორბიტალური სიმაღლეები დედამიწიდან 2000-დან 36000 კილომეტრამდე (1200-დან 22400 მილამდე) მერყეობს.
საშუალო ორბიტების ქვემოთ მდებარე რეგიონს უწოდებენ დედამიწის დაბალი ორბიტას (LEO) და მდებარეობს დედამიწიდან 160-დან 2000 კილომეტრამდე (99-დან 1243 მილამდე).
ვინაიდან MEO-სა და LEO-ის თანამგზავრები უფრო სწრაფად ბრუნავენ დედამიწის გარშემო, ისინი არ რჩებიან ცაში ხილული დედამიწის ფიქსირებულ წერტილამდე, როგორც გეოსტაციონარული თანამგზავრი, არამედ ეჩვენებათ, რომ ხმელეთზე დამკვირვებელს გადაკვეთს ცა და "ჩადის", როდესაც ისინი უკან მიდიან. დედამიწა ხილული ჰორიზონტის მიღმა. ამიტომ, ამ ქვედა ორბიტებთან უწყვეტი კომუნიკაციის შესაძლებლობის უზრუნველსაყოფად საჭიროა თანამგზავრების უფრო დიდი რაოდენობა, ასე რომ, ერთ-ერთი ასეთი თანამგზავრი ყოველთვის ხილული იქნება ცაში საკომუნიკაციო სიგნალების გადაცემისთვის. თუმცა, დედამიწასთან უფრო ახლო მანძილის გამო, LEO ან MEO თანამგზავრებს შეუძლიათ მიწასთან კომუნიკაცია შემცირებული ლატენტურობით და უფრო დაბალი სიმძლავრით, ვიდრე ეს საჭირო იქნება გეოსინქრონული ორბიტიდან

დედამიწის დაბალი ორბიტა (LEO) ჩვეულებრივ არის წრიული ორბიტა დედამიწის ზედაპირიდან 160-დან 2000 კილომეტრამდე (99-დან 1243 მილამდე) და, შესაბამისად, პერიოდი (დედამიწის გარშემო ბრუნვის დრო) დაახლოებით 90 წუთი.

მათი დაბალი სიმაღლის გამო, ეს თანამგზავრები ჩანს მხოლოდ ქვესატელიტური წერტილიდან დაახლოებით 1000 კილომეტრის (620 მილი) რადიუსიდან. გარდა ამისა, თანამგზავრები დედამიწის დაბალ ორბიტაზე სწრაფად ცვლიან თავიანთ პოზიციას მიწის პოზიციასთან შედარებით. ასე რომ, ადგილობრივი აპლიკაციებისთვისაც კი, ბევრი თანამგზავრია საჭირო, თუ მისია მოითხოვს უწყვეტ კავშირს.

დაბალი დედამიწის ორბიტაზე მყოფი თანამგზავრების ორბიტაზე გაშვება ნაკლებად ძვირია, ვიდრე გეოსტაციონარული თანამგზავრები და, მიწასთან სიახლოვის გამო, არ საჭიროებს სიგნალის მაღალ სიძლიერეს (სიგნალის სიძლიერე ეცემა როგორც წყაროდან მანძილის კვადრატი, ამიტომ ეფექტი არის მნიშვნელოვანი). ამრიგად, თანამგზავრების რაოდენობასა და მათ ღირებულებას შორის ურთიერთგაცვლა ხდება.

გარდა ამისა, მნიშვნელოვანი განსხვავებებია საბორტო და სახმელეთო აღჭურვილობაში, რომელიც საჭიროა ორი ტიპის მისიის მხარდასაჭერად.

თანავარსკვლავედის თანავარსკვლავედი
მთავარი სტატია: თანავარსკვლავედის თანავარსკვლავედი
თანამგზავრების ჯგუფი, რომლებიც მუშაობენ კონცერტზე, ცნობილია როგორც თანავარსკვლავედი. ორი ასეთი თანავარსკვლავედი, რომლებიც განკუთვნილია სატელიტური ტელეფონისა და მონაცემთა დაბალი სიჩქარის სერვისების უზრუნველსაყოფად, ძირითადად შორეულ ადგილებში, არის Iridium და Globalstar სისტემები. ირიდიუმის სისტემას აქვს 66 თანამგზავრი, რომელთა ორბიტალური დახრილობა 86,4° და თანამგზავრთაშორისი კავშირები უზრუნველყოფს მომსახურების ხელმისაწვდომობას დედამიწის მთელ ზედაპირზე. Starlink არის სატელიტური ინტერნეტ თანავარსკვლავედი, რომელსაც მართავს SpaceX, რომელიც მიზნად ისახავს გლობალური თანამგზავრული ინტერნეტით დაფარვას.

ასევე შესაძლებელია უწყვეტი დაფარვის შეთავაზება დედამიწის დაბალი ორბიტის თანამგზავრის გამოყენებით, რომელსაც შეუძლია შეინახოს მიღებული მონაცემები დედამიწის ერთ ნაწილზე გავლისას და მოგვიანებით გადასცეს მეორე ნაწილზე გადასვლისას. ეს იქნება კანადის CASSIOPE საკომუნიკაციო თანამგზავრის CASCADE სისტემის შემთხვევაში. კიდევ ერთი სისტემა, რომელიც იყენებს ამ შენახვისა და გადამისამართების მეთოდს, არის Orbcomm.

დედამიწის საშუალო ორბიტა (MEO)
მთავარი სტატია: დედამიწის საშუალო ორბიტა
დედამიწის საშუალო ორბიტა არის თანამგზავრი დედამიწის ზედაპირიდან სადღაც 2000-დან 35786 კილომეტრამდე (1243 და 22236 მილი) ორბიტაზე. MEO თანამგზავრები ფუნქციონალურობით LEO თანამგზავრების მსგავსია. MEO თანამგზავრები ხილული არიან ბევრად უფრო დიდი ხნის განმავლობაში, ვიდრე LEO თანამგზავრები, ჩვეულებრივ 2-დან 8 საათამდე. MEO თანამგზავრებს უფრო დიდი დაფარვის არე აქვთ ვიდრე LEO თანამგზავრებს. MEO თანამგზავრის უფრო გრძელი ხილვადობა და უფრო ფართო კვალი ნიშნავს, რომ MEO ქსელში ნაკლები თანამგზავრია საჭირო, ვიდრე LEO ქსელი. ერთი მინუსი არის ის, რომ MEO თანამგზავრის მანძილი აძლევს მას უფრო მეტ დროს დაყოვნებას და უფრო სუსტ სიგნალს, ვიდრე LEO თანამგზავრი, თუმცა ეს შეზღუდვები არ არის ისეთი მკაცრი, როგორც GEO თანამგზავრის შეზღუდვები.

LEO-ების მსგავსად, ეს თანამგზავრები არ ინარჩუნებენ სტაციონალურ მანძილს დედამიწიდან. ეს გეოსტაციონარული ორბიტისგან განსხვავებით, სადაც თანამგზავრები დედამიწიდან ყოველთვის 35,786 კილომეტრში (22,236 მილი) არიან.

როგორც წესი, საშუალო დედამიწის ორბიტის თანამგზავრის ორბიტა დედამიწაზე დაახლოებით 16,000 კილომეტრია (10,000 მილი). სხვადასხვა ნიმუშებით, ეს თანამგზავრები დედამიწის გარშემო მოგზაურობენ 2-დან 8 საათამდე.
MEO-ს მაგალითები
1962 წელს საკომუნიკაციო თანამგზავრი Telstar გაუშვეს. ეს იყო საშუალო დედამიწის ორბიტის თანამგზავრი, რომელიც შექმნილია მაღალსიჩქარიანი სატელეფონო სიგნალების გასაადვილებლად. მიუხედავად იმისა, რომ ეს იყო ჰორიზონტზე სიგნალების გადაცემის პირველი პრაქტიკული გზა, მისი მთავარი ნაკლი მალევე გაირკვა. იმის გამო, რომ მისი ორბიტალური პერიოდი დაახლოებით 2,5 საათი არ ემთხვეოდა დედამიწის ბრუნვის პერიოდს 24 საათის განმავლობაში, უწყვეტი დაფარვა შეუძლებელი იყო. აშკარა იყო, რომ უწყვეტი დაფარვის უზრუნველსაყოფად საჭირო იყო მრავალი MEO-ის გამოყენება.
2013 წელს MEO თანავარსკვლავედის პირველი ოთხი თანავარსკვლავედი გაუშვა. O3b თანამგზავრები უზრუნველყოფენ ფართოზოლოვანი ინტერნეტის სერვისებს, კერძოდ, დისტანციურ ადგილებში და საზღვაო და ფრენის დროს გამოყენებას, და ორბიტაზე 8063 კილომეტრის სიმაღლეზე (5010 მილი).
გეოსტაციონარული ორბიტა (GEO
                                                         
დედამიწაზე დამკვირვებელს გეოსტაციონარული ორბიტაზე მყოფი თანამგზავრი უმოძრაოდ ეჩვენება ცაში ფიქსირებულ მდგომარეობაში. ეს იმიტომ ხდება, რომ ის დედამიწის გარშემო ტრიალებს დედამიწის საკუთარი კუთხური სიჩქარით (ერთი რევოლუცია დღე-ღამეში, ეკვატორულ ორბიტაზე).

გეოსტაციონარული ორბიტა სასარგებლოა კომუნიკაციებისთვის, რადგან სახმელეთო ანტენები სატელიტისკენ შეიძლება იყოს მიმართული სატელიტის მოძრაობაზე თვალყურის დევნების გარეშე. ეს შედარებით იაფია.

აპლიკაციებში, რომლებიც საჭიროებენ ბევრ მიწისზედა ანტენას, როგორიცაა DirecTV დისტრიბუცია, სახმელეთო აღჭურვილობაში დანაზოგი შეიძლება აღემატებოდეს ორბიტაზე თანამგზავრის განთავსების ღირებულებას და სირთულეს.

GEO-ს მაგალითები
პირველი გეოსტაციონარული თანამგზავრი იყო Syncom 3, გაშვებული 1964 წლის 19 აგვისტოს და გამოიყენებოდა წყნარი ოკეანის მასშტაბით კომუნიკაციისთვის, დაწყებული 1964 წლის ზაფხულის ოლიმპიური თამაშების სატელევიზიო გაშუქებით. Syncom 3-ის შემდეგ მალევე, Intelsat I, იგივე Early Bird, გაშვებული იქნა 1965 წლის 6 აპრილს და განთავსდა ორბიტაზე დასავლეთ გრძედის 28°-ზე. ეს იყო პირველი გეოსტაციონარული თანამგზავრი ტელეკომუნიკაციისთვის ატლანტის ოკეანეში.
1972 წლის 9 ნოემბერს, კანადის პირველი გეოსტაციონარული თანამგზავრი, რომელიც ემსახურება კონტინენტს, Anik A1, გაუშვა Telesat Canada-მ, აშშ-მაც მისდევდა Westar 1-ის გაშვებას Western Union-ის მიერ 1974 წლის 13 აპრილს.
1974 წლის 30 მაისს გაუშვა მსოფლიოში პირველი გეოსტაციონარული საკომუნიკაციო თანამგზავრი, რომელიც სამღერძიანი სტაბილიზირებული იყო: NASA-სთვის აშენებული ექსპერიმენტული თანამგზავრი ATS-6.
Telstar-ის გაშვების შემდეგ Westar 1-ის თანამგზავრების მეშვეობით, RCA Americom-მა (მოგვიანებით GE Americom, ახლა SES) 1975 წელს გამოუშვა Satcom 1. სწორედ Satcom 1-მა მნიშვნელოვანი როლი ითამაშა ადრეული საკაბელო ტელეარხების დასახმარებლად, როგორიცაა WTBS (ახლანდელი TBS), HBO, CBN (ამჟამად Freeform) და The Weather Channel გახდა წარმატებული, რადგან ეს არხები ავრცელებდნენ თავიანთ პროგრამებს ყველა ადგილობრივ საკაბელო ტელევიზიაზე სატელიტის გამოყენებით. გარდა ამისა, ეს იყო პირველი სატელიტი, რომელიც გამოიყენებოდა სამაუწყებლო სატელევიზიო ქსელების მიერ შეერთებულ შტატებში, როგორიცაა ABC, NBC და CBS, პროგრამირების გასავრცელებლად ადგილობრივ შვილობილი სადგურებისთვის. Satcom 1 ფართოდ გამოიყენებოდა, რადგან მას გააჩნდა ორჯერ მეტი საკომუნიკაციო სიმძლავრე, ვიდრე კონკურენტ Westar 1-ს ამერიკაში (24 ტრანსპონდერი Westar 1-ის 12-ისგან განსხვავებით), რამაც გამოიწვია ტრანსპონდერის გამოყენების დაბალი ღირებულება. შემდგომ ათწლეულებში თანამგზავრებს უფრო მაღალი ტრანსპონდერების რიცხვი ჰქონდათ.
2000 წლისთვის Hughes Space and Communications-მა (ამჟამად Boeing Satellite Development Center) ააშენა ასზე მეტი თანამგზავრის თითქმის 40 პროცენტი მთელ მსოფლიოში. თანამგზავრების სხვა მსხვილ მწარმოებლებს შორისაა Space Systems/Loral, Orbital Sciences Corporation ვარსკვლავური ავტობუსის სერიით, ინდური კოსმოსური კვლევის ორგანიზაცია, Lockheed Martin (ფლობს ყოფილ RCA Astro Electronics/GE Astro Space ბიზნესს), Northrop Grumman, Alcatel Space, ახლა Thales Alenia Space. , Spacebus სერიებით და Astrium.
მოლნიას ორბიტა
მთავარი სტატია: მოლნიას ორბიტა
გეოსტაციონარული თანამგზავრები უნდა მუშაობდნენ ეკვატორის ზემოთ და, შესაბამისად, ჰორიზონტზე უფრო დაბლა უნდა გამოჩნდნენ, რადგან მიმღები ეკვატორიდან შორდება. ეს გამოიწვევს პრობლემებს ჩრდილოეთის უკიდურეს განედებზე, რაც გავლენას მოახდენს დაკავშირებაზე და გამოიწვევს მრავალგზის ჩარევას (მიწიდან და მიწის ანტენის სიგნალების ასახვით).

ამრიგად, ჩრდილოეთ (და სამხრეთ) პოლუსთან ახლოს მდებარე ტერიტორიებისთვის, გეოსტაციონარული თანამგზავრი შეიძლება გამოჩნდეს ჰორიზონტის ქვემოთ. ამიტომ, ამ პრობლემის შესამსუბუქებლად, ძირითადად, რუსეთში გაუშვეს მოლნიას ორბიტის თანამგზავრები.

მოლნიას ორბიტები შეიძლება იყოს მიმზიდველი ალტერნატივა ასეთ შემთხვევებში. მოლნიას ორბიტა ძალიან დახრილია, რაც უზრუნველყოფს ორბიტის ჩრდილოეთ ნაწილზე კარგ სიმაღლეს შერჩეულ პოზიციებზე. (სიმაღლე არის თანამგზავრის პოზიციის ზომა ჰორიზონტზე ზემოთ. ამრიგად, ჰორიზონტზე მდებარე თანამგზავრს აქვს ნულოვანი სიმაღლე, ხოლო თანამგზავრს პირდაპირ ზევით აქვს სიმაღლე 90 გრადუსი.)

მოლნიას ორბიტა ისეა შექმნილი, რომ თანამგზავრი დროის დიდ ნაწილს ატარებს შორეულ ჩრდილოეთ განედებზე, რომლის დროსაც მისი მიწის ნაკვალევი მხოლოდ ოდნავ მოძრაობს. მისი პერიოდი არის ნახევარი დღე, ასე რომ, თანამგზავრი ხელმისაწვდომია სამიზნე რეგიონზე ექვს-ცხრა საათის განმავლობაში ყოველ მეორე რევოლუციაზე. ამ გზით სამი Molniya თანამგზავრისგან შემდგარი თანავარსკვლავედი (პლუს ორბიტაზე სათადარიგო ნაწილები) შეუძლია უზრუნველყოს უწყვეტი დაფარვა.

მოლნიას სერიის პირველი თანამგზავრი გაუშვა 1965 წლის 23 აპრილს და გამოიყენებოდა სატელევიზიო სიგნალების ექსპერიმენტული გადაცემისთვის მოსკოვის ზემომავალი სადგურიდან ციმბირში და რუსეთის შორეულ აღმოსავლეთში, ნორილსკში, ხაბაროვსკში, მაგადანსა და ვლადივოსტოკში მდებარე ქვედამავალი სადგურებისკენ. 1967 წლის ნოემბერში საბჭოთა ინჟინრებმა შექმნეს სატელიტური ტელევიზიის ეროვნული სატელევიზიო ქსელის უნიკალური სისტემა, სახელწოდებით Orbita, რომელიც დაფუძნებული იყო Molniya თანამგზავრებზე.

პოლარული ორბიტა
მთავარი სტატია: პოლარული ორბიტა
შეერთებულ შტატებში, 1994 წელს შეიქმნა ნაციონალური პოლარული ორბიტის ოპერატიული გარემოსდაცვითი სატელიტური სისტემა (NPOESS) NASA-ს (National Aeronautics and Space Administration) NOAA (National Oceanic and Atmospheric Administration) პოლარული თანამგზავრების ოპერაციების კონსოლიდაციის მიზნით. NPOESS მართავს უამრავ თანამგზავრს სხვადასხვა მიზნებისთვის; მაგალითად, METSAT მეტეოროლოგიური თანამგზავრისთვის, EUMETSAT პროგრამის ევროპული ფილიალისთვის და METOP მეტეოროლოგიური ოპერაციებისთვის.

ეს ორბიტები მზის სინქრონულია, რაც იმას ნიშნავს, რომ ისინი ეკვატორს კვეთენ ერთსა და იმავე ლოკალურ დროს ყოველდღე. მაგალითად, NPOESS (სამოქალაქო) ორბიტაზე მყოფი თანამგზავრები გადაკვეთენ ეკვატორს სამხრეთიდან ჩრდილოეთისკენ მიმავალ დროს 13:30, 17:30 და 9:30 სთ.

გეოსტაციონარული ორბიტის მიღმა
არსებობს გეგმები და ინიციატივები, რათა გამოვიდეს სპეციალური საკომუნიკაციო თანამგზავრი გეოსტაციონარული ორბიტების მიღმა. NASA-მ შესთავაზა LunaNet, როგორც მონაცემთა ქსელი, რომლის მიზანია უზრუნველყოს „მთვარის ინტერნეტი ცის-მთვარის კოსმოსური ხომალდებისთვის და ინსტალაციებისთვის. Moonlight Initiative არის ESA-ს ეკვივალენტური პროექტი[31][32], რომელიც თავსებადია და უზრუნველყოფს სანავიგაციო სერვისებს მთვარის ზედაპირზე. ორივე პროგრამა წარმოადგენს რამდენიმე თანამგზავრის თანავარსკვლავედს მთვარის გარშემო სხვადასხვა ორბიტაზე.

დაგეგმილია სხვა ორბიტების გამოყენებაც. პოზიციები დედამიწა-მთვარე-ლიბრაციის წერტილებში ასევე შემოთავაზებულია საკომუნიკაციო თანამგზავრებისთვის, რომლებიც ფარავს მთვარეს ისევე, როგორც საკომუნიკაციო თანამგზავრები გეოსინქრონულ ორბიტაზე დაფარავს დედამიწას.[33][34] ასევე განიხილება გამოყოფილი საკომუნიკაციო თანამგზავრები მარსის გარშემო ორბიტებზე, რომლებიც მხარს უჭერენ სხვადასხვა მისიებს ზედაპირზე და სხვა ორბიტებზე, როგორიცაა Mars Telecommunications Orbiter.

სტრუქტურა
საკომუნიკაციო თანამგზავრები ჩვეულებრივ შედგება შემდეგი ქვესისტემებისგან:

საკომუნიკაციო დატვირთვა, რომელიც ჩვეულებრივ შედგება ტრანსპონდერებისგან, ანტენებისგან და გადართვის სისტემებისგან
ძრავები გამოიყენება სატელიტის სასურველ ორბიტამდე მისაყვანად
სადგურის თვალთვალის და სტაბილიზაციის ქვესისტემა, რომელიც გამოიყენება სატელიტის სწორ ორბიტაზე შესანარჩუნებლად, მისი ანტენებით სწორი მიმართულებით და მისი ენერგეტიკული სისტემით მიმართული მზისკენ.
ენერგეტიკული ქვესისტემა, რომელიც გამოიყენება სატელიტური სისტემების კვებისათვის, რომელიც ჩვეულებრივ შედგება მზის უჯრედებისგან და ბატარეებისგან, რომლებიც ინარჩუნებენ ენერგიას მზის დაბნელების დროს
Command and Control ქვესისტემა, რომელიც ინარჩუნებს კომუნიკაციას სახმელეთო კონტროლის სადგურებთან. მიწისზედა კონტროლის დედამიწის სადგურები აკონტროლებენ თანამგზავრის მუშაობას და აკონტროლებენ მის ფუნქციონირებას მისი სასიცოცხლო ციკლის სხვადასხვა ფაზაში.
თანამგზავრიდან ხელმისაწვდომი გამტარუნარიანობა დამოკიდებულია თანამგზავრის მიერ მოწოდებულ ტრანსპონდერების რაოდენობაზე. თითოეული სერვისი (ტელევიზორი, ხმა, ინტერნეტი, რადიო) გადაცემისთვის საჭიროებს გამტარუნარიანობის განსხვავებულ რაოდენობას. ეს ჩვეულებრივ ცნობილია, როგორც ბმულის ბიუჯეტირება და ქსელის სიმულატორი შეიძლება გამოყენებულ იქნას ზუსტი მნიშვნელობის მისაღწევად.

სიხშირის განაწილება სატელიტური სისტემებისთვის
სატელიტური სერვისებისთვის სიხშირეების განაწილება რთული პროცესია, რომელიც მოითხოვს საერთაშორისო კოორდინაციას და დაგეგმვას. ეს ხორციელდება საერთაშორისო სატელეკომუნიკაციო კავშირის (ITU) ეგიდით. სიხშირის დაგეგმვის გასაადვილებლად, სამყარო იყოფა თრee რეგიონები:

რეგიონი 1: ევროპა, აფრიკა, ახლო აღმოსავლეთი, ადრე საბჭოთა კავშირი და მონღოლეთი
რეგიონი 2: ჩრდილოეთ და სამხრეთ ამერიკა და გრენლანდია
რეგიონი 3: აზია (1 რეგიონის გამოკლებით), ავსტრალია და წყნარი ოკეანის სამხრეთ-დასავლეთი
ამ რეგიონებში, სიხშირის დიაპაზონი გამოყოფილია სხვადასხვა სატელიტური სერვისებისთვის, თუმცა მოცემულ სერვისს შეიძლება მიეკუთვნოს სხვადასხვა სიხშირის დიაპაზონი სხვადასხვა რეგიონში. თანამგზავრების მიერ მოწოდებული ზოგიერთი სერვისი არის
ტელეფონია
მთავარი სტატია: სატელიტური ტელეფონი
                                                                    
ირიდიუმის თანამგზავრი
პირველი და ისტორიულად ყველაზე მნიშვნელოვანი გამოყენება საკომუნიკაციო თანამგზავრებისთვის იყო კონტინენტთაშორისი საქალაქთაშორისო ტელეფონში. ფიქსირებული საზოგადოებრივი ჩართული სატელეფონო ქსელი გადასცემს სატელეფონო ზარებს სახმელეთო ტელეფონებიდან დედამიწის სადგურამდე, სადაც ისინი გადაიცემა გეოსტაციონარული თანამგზავრზე. ქვემოთ ბმული მიჰყვება ანალოგიურ გზას. წყალქვეშა საკომუნიკაციო კაბელების გაუმჯობესებამ ოპტიკურ-ბოჭკოვანი სისტემის გამოყენებით გამოიწვია მე-20 საუკუნის ბოლოს ფიქსირებული ტელეფონისთვის თანამგზავრების გამოყენების გარკვეული შემცირება.

სატელიტური კომუნიკაციები დღესაც გამოიყენება მრავალ აპლიკაციაში. შორეულ კუნძულებს, როგორიცაა ამაღლების კუნძული, წმინდა ელენა, დიეგო გარსია და აღდგომის კუნძული, სადაც წყალქვეშა კაბელები არ მუშაობს, სატელიტური ტელეფონები სჭირდებათ. ასევე არის ზოგიერთი კონტინენტისა და ქვეყნების რეგიონები, სადაც სახმელეთო ტელეკომუნიკაციები იშვიათია ან არ არსებობს, მაგალითად, სამხრეთ ამერიკის დიდი რეგიონები, აფრიკა, კანადა, ჩინეთი, რუსეთი და ავსტრალია. სატელიტური კომუნიკაციები ასევე უზრუნველყოფს კავშირს ანტარქტიდისა და გრენლანდიის კიდეებთან. სატელიტური ტელეფონებისთვის მიწის სხვა გამოყენებაა ზღვაზე გაყვანილობა, სარეზერვო საავადმყოფოებისთვის, სამხედროებისთვის და დასვენებისთვის. გემები ზღვაზე, ისევე როგორც თვითმფრინავები, ხშირად იყენებენ სატელიტურ ტელეფონებს.

სატელიტური სატელეფონო სისტემები შეიძლება განხორციელდეს მრავალი გზით. ფართო მასშტაბით, ხშირად იზოლირებულ უბანში იქნება ადგილობრივი სატელეფონო სისტემა, რომელიც დაკავშირებულია სატელეფონო სისტემასთან მთავარ მიწის ფართობზე. ასევე არის სერვისები, რომლებიც რადიოსიგნალს სატელეფონო სისტემაში ჩაასწორებენ. ამ მაგალითში თითქმის ნებისმიერი ტიპის სატელიტის გამოყენება შეიძლება. სატელიტური ტელეფონები პირდაპირ უკავშირდებიან გეოსტაციონარული ან დედამიწის დაბალ ორბიტაზე თანამგზავრების თანავარსკვლავედს. შემდეგ ზარები გადაეგზავნება სატელიტურ ტელეპორტს, რომელიც დაკავშირებულია საჯარო გადართვის სატელეფონო ქსელთან.

ტელევიზია
მთავარი სტატია: სატელიტური ტელევიზია
როდესაც ტელევიზია გახდა მთავარი ბაზარი, მისი მოთხოვნა დიდი გამტარუნარიანობის შედარებით მცირე სიგნალის ერთდროულ მიწოდებაზე ბევრ მიმღებზე, რაც უფრო ზუსტი ემთხვევა გეოსინქრონული კომსატების შესაძლებლობებს. სატელიტის ორი ტიპი გამოიყენება ჩრდილოეთ ამერიკის ტელევიზიისა და რადიოსთვის: პირდაპირი სამაუწყებლო თანამგზავრი (DBS) და ფიქსირებული სერვისის სატელიტი (FSS).

FSS და DBS თანამგზავრების განმარტებები ჩრდილოეთ ამერიკის გარეთ, განსაკუთრებით ევროპაში, ცოტა უფრო ბუნდოვანია. ევროპაში პირდაპირი სახლის ტელევიზიისთვის გამოყენებული თანამგზავრების უმეტესობას აქვს იგივე მაღალი სიმძლავრე, როგორც DBS კლასის თანამგზავრებს ჩრდილოეთ ამერიკაში, მაგრამ იყენებს იგივე ხაზოვან პოლარიზაციას, როგორც FSS კლასის თანამგზავრები. ამის მაგალითებია Astra, Eutelsat და Hotbird კოსმოსური ხომალდები ევროპის კონტინენტზე ორბიტაზე. ამის გამო ტერმინები FSS და DBS უფრო მეტად გამოიყენება ჩრდილოეთ ამერიკის კონტინენტზე და იშვიათია ევროპაში.

ფიქსირებული სერვისის თანამგზავრები იყენებენ C დიაპაზონს და Ku band-ის ქვედა ნაწილებს. ისინი ჩვეულებრივ გამოიყენება სატელევიზიო ქსელებისა და ადგილობრივი შვილობილი სადგურების სამაუწყებლო არხებისთვის (როგორიცაა პროგრამების არხები ქსელური და სინდიკატური გადაცემებისთვის, პირდაპირი კადრები და ბექჰაულები), ასევე გამოიყენება დისტანციური სწავლებისთვის სკოლებსა და უნივერსიტეტებში, ბიზნეს ტელევიზიაში ( BTV), ვიდეოკონფერენცია და ზოგადად კომერციული ტელეკომუნიკაციები. FSS თანამგზავრები ასევე გამოიყენება ეროვნული საკაბელო არხების გასავრცელებლად საკაბელო ტელევიზიის სათავეებში.

უფასო სატელიტური სატელევიზიო არხები ასევე ჩვეულებრივ ნაწილდება FSS თანამგზავრებზე Ku band-ში. Intelsat Americas 5, Galaxy 10R და AMC 3 თანამგზავრები ჩრდილოეთ ამერიკაში უზრუნველყოფენ საკმაოდ დიდ FTA არხებს თავიანთ Ku band ტრანსპონდერებზე.

ამერიკული Dish Network DBS სერვისმა ასევე ახლახან გამოიყენა FSS ტექნოლოგია, ისევე როგორც მათი პროგრამირების პაკეტებისთვის, რომლებიც საჭიროებენ SuperDish ანტენას, რადგან Dish Network-ს სჭირდება მეტი სიმძლავრე ადგილობრივი სატელევიზიო სადგურების გადასაყვანად FCC-ის „აუცილებელი“ რეგულაციების შესაბამისად და მეტი გამტარუნარიანობისთვის. განახორციელოს HDTV არხები.

პირდაპირი სამაუწყებლო თანამგზავრი არის საკომუნიკაციო თანამგზავრი, რომელიც გადასცემს პატარა DBS სატელიტურ თეფშებს (ჩვეულებრივ 18-დან 24 ინჩამდე ან 45-დან 60 სმ-მდე დიამეტრის). პირდაპირი სამაუწყებლო თანამგზავრები, როგორც წესი, მოქმედებენ მიკროტალღური Ku ზოლის ზედა ნაწილში. DBS ტექნოლოგია გამოიყენება DTH-ზე ორიენტირებული (Direct-to-Home) სატელიტური ტელევიზიის სერვისებისთვის, როგორიცაა DirecTV, DISH Network და Orby TV[36] შეერთებულ შტატებში, Bell Satellite TV და Shaw Direct კანადაში, Freesat და Sky დიდი ბრიტანეთი, ირლანდია და ახალი ზელანდია და DSTV სამხრეთ აფრიკაში.

DBS-ზე დაბალ სიხშირეზე და სიმძლავრეზე ფუნქციონირებს, FSS თანამგზავრებს სჭირდებათ ბევრად უფრო დიდი თეფშები მისაღებად (3-დან 8 ფუტი (1-დან 2,5 მ) დიამეტრით Ku ზოლისთვის და 12 ფუტი (3,6 მ) ან მეტი C დიაპაზონისთვის). ისინი იყენებენ ხაზოვან პოლარიზაციას თითოეული ტრანსპონდერის RF შეყვანისა და გამომავალისთვის (განსხვავებით წრიული პოლარიზაციისგან, რომელსაც იყენებენ DBS თანამგზავრები), მაგრამ ეს არის უმნიშვნელო ტექნიკური განსხვავება, რომელსაც მომხმარებლები ვერ ამჩნევენ. FSS სატელიტური ტექნოლოგია ასევე თავდაპირველად გამოიყენებოდა DTH სატელიტური ტელევიზიისთვის 1970-იანი წლების ბოლოდან 1990-იანი წლების დასაწყისში შეერთებულ შტატებში TVRO (მხოლოდ ტელევიზიის მიღება) მიმღების და ჭურჭლის სახით. იგი ასევე გამოიყენებოდა მისი Ku band ფორმაში ახლა უკვე მოქმედი P-სთვის
rimestar სატელიტური ტელევიზიის სერვისი.

გაშვებულია ზოგიერთი თანამგზავრი, რომელსაც აქვს ტრანსპონდერები Ka ზოლში, როგორიცაა DirecTV-ის SPACEWAY-1 თანამგზავრი და Anik F2. NASA-მ და ISRO-მ  ასევე გაუშვა ექსპერიმენტული თანამგზავრები, რომლებსაც ატარებენ Ka band შუქურები.

ზოგიერთმა მწარმოებელმა ასევე დანერგა სპეციალური ანტენები DBS ტელევიზიის მობილური მიმღებისთვის. გლობალური პოზიციონირების სისტემის (GPS) ტექნოლოგიის გამოყენებით, როგორც მითითებას, ეს ანტენები ავტომატურად ხელახლა მიიმართება სატელიტისკენ, არ აქვს მნიშვნელობა სად და როგორ მდებარეობს მანქანა (რომელზეც ანტენა არის დამონტაჟებული). ეს მობილური სატელიტური ანტენები პოპულარულია რეკრეაციული მანქანების ზოგიერთ მფლობელთან. ასეთი მობილური DBS ანტენები ასევე გამოიყენება JetBlue Airways-ის მიერ DirecTV-სთვის (მოწოდებული LiveTV-ის მიერ, JetBlue-ის შვილობილი კომპანია), რომლის ხილვა მგზავრებს შეუძლიათ სავარძლებზე დამონტაჟებულ LCD ეკრანებზე.
იხ. ვიდეო - How do Satellites work? | ICT #10 - We live our lives knowing that many satellites orbit our planet everyday, and that they are helping us in several ways. You might be surprised to know that there are almost 4,900 satellites orbiting the earth. The most obvious questions that come to mind are: Why are these satellites in totally different orbits? How does a satellite carry out all of its functions? And, what are the components inside them, which help them to accomplish all of their allotted tasks? Let's explore the answers to all these questions in detail.



რადიომაუწყებლობა
მთავარი სტატია: სატელიტური რადიო
სატელიტური რადიო გთავაზობთ აუდიო მაუწყებლობის სერვისებს ზოგიერთ ქვეყანაში, განსაკუთრებით შეერთებულ შტატებში. მობილური სერვისები მსმენელებს საშუალებას აძლევს იარონ კონტინენტზე, მოუსმინონ იმავე აუდიო პროგრამებს ყველგან.

სატელიტური რადიო ან სააბონენტო რადიო (SR) არის ციფრული რადიო სიგნალი, რომელიც გადაიცემა საკომუნიკაციო თანამგზავრის მიერ, რომელიც მოიცავს ბევრად უფრო ფართო გეოგრაფიულ დიაპაზონს, ვიდრე მიწისზედა რადიო სიგნალები.

სამოყვარულო რადიო
მთავარი სტატია: სამოყვარულო რადიო თანამგზავრი
სამოყვარულო რადიოოპერატორებს აქვთ წვდომა სამოყვარულო თანამგზავრებზე, რომლებიც შექმნილია სპეციალურად სამოყვარულო რადიო ტრაფიკისთვის. ასეთი თანამგზავრების უმეტესობა ფუნქციონირებს როგორც კოსმოსური რეპეტიტორები და, როგორც წესი, წვდომა აქვთ მოყვარულებს, რომლებიც აღჭურვილია UHF ან VHF რადიო მოწყობილობებით და მაღალი მიმართულების ანტენებით, როგორიცაა Yagis ან თეფშების ანტენები. გაშვების ხარჯების გამო, ამჟამინდელი სამოყვარულო თანამგზავრების უმეტესობა გაშვებულია დედამიწის საკმაოდ დაბალ ორბიტებზე და შექმნილია იმისთვის, რომ გაუმკლავდეს მხოლოდ შეზღუდული რაოდენობის მოკლე კონტაქტებს ნებისმიერ დროს. ზოგიერთი თანამგზავრი ასევე უზრუნველყოფს მონაცემთა გადამისამართების სერვისებს X.25 ან მსგავსი პროტოკოლების გამოყენებით.

ინტერნეტთან წვდომა
მთავარი სტატია: სატელიტური ინტერნეტი
1990-იანი წლების შემდეგ, სატელიტური საკომუნიკაციო ტექნოლოგია გამოიყენებოდა, როგორც ინტერნეტთან დაკავშირების საშუალება ფართოზოლოვანი მონაცემთა კავშირების საშუალებით. ეს შეიძლება იყოს ძალიან სასარგებლო მომხმარებლებისთვის, რომლებიც მდებარეობენ შორეულ ადგილებში და არ შეუძლიათ წვდომა ფართოზოლოვან კავშირზე, ან საჭიროებენ სერვისების მაღალ ხელმისაწვდომობას.

სამხედრო
მთავარი სტატია : სამხედრო საკომუნიკაციო თანამგზავრი
დამატებითი ინფორმაცია: X Band Satellite Communication
საკომუნიკაციო თანამგზავრები გამოიყენება სამხედრო საკომუნიკაციო აპლიკაციებისთვის, როგორიცაა გლობალური სარდლობისა და კონტროლის სისტემები. სამხედრო სისტემების მაგალითები, რომლებიც იყენებენ საკომუნიკაციო თანამგზავრებს, არის შეერთებული შტატების MILSTAR, DSCS და FLTSATCOM, ნატოს თანამგზავრები, გაერთიანებული სამეფოს თანამგზავრები (მაგალითად, Skynet) და ყოფილი საბჭოთა კავშირის თანამგზავრები. ინდოეთმა გაუშვა თავისი პირველი სამხედრო საკომუნიკაციო თანამგზავრი GSAT-7, მისი ტრანსპონდერები მოქმედებენ UHF, F, C და Ku ზოლებში. როგორც წესი, სამხედრო თანამგზავრები მოქმედებენ UHF, SHF (ასევე ცნობილია როგორც X-band) ან EHF (ასევე ცნობილია როგორც Ka band) სიხშირის ზოლებში.
იხ. ვიდეო - How Satellite Works (Animation)




მონაცემთა შეგროვება
ადგილზე მიმდებარედ ადგილზე გარემოს მონიტორინგის მოწყობილობას (როგორიცაა ამინდის სადგურები, ამინდის ბუოები და რადიოზონდები), შეიძლება გამოიყენონ თანამგზავრები ცალმხრივი მონაცემთა გადაცემისთვის ან ორმხრივი ტელემეტრია და ტელეკონტროლი. ის შეიძლება დაფუძნებული იყოს ამინდის თანამგზავრის მეორად დატვირთვაზე (როგორც GOES-ის და METEOSAT-ის და სხვა Argos-ის სისტემაში) ან სპეციალურ თანამგზავრებზე (როგორიცაა SCD). მონაცემთა სიჩქარე, როგორც წესი, გაცილებით დაბალია, ვიდრე სატელიტური ინტერნეტით.



Комментариев нет:

მუსიკალური პაუზა

ცოდნა სინათლეა - Knowledge is light - Знание свет -                         მუსიკალური პაუზა  ჩვენ ვიკლევთ სამყაროს აგებულებას ოღონდ ჩვენი ...